Metamodels based on deterministic and stochastic radial basis functions for engine noise shielding of innovative aircraft

U. Iemma, L. Burghignoli, F. Centracchio, and M. Rossetti

Department of Engineering
University Roma Tre

22nd Workshop of the Aeroacoustics Specialists Committee of the CEAS
NLR, 6–7 September 2018
Amsterdam, The Netherlands
Scope of the work

- Analyse the potential of meta-modelling techniques based on Radial Basis Functions (RBF) in aeroacoustics.

- Develop dynamic meta-models for high-efficiency optimisation in presence of aeroacoustic objectives and constraints.

- Estimate the uncertainty related to breakthrough technologies in general-purpose analysis tools.
Sustainable development of civil aviation is strongly **noise-constrained**

Aeroacoustics must be considered in the conceptual design phase

Simple noise models are not available for innovative concepts

ARTEM *(Aircraft noise Reduction Technologies and related Environmental iMpact)*

Robust MOCDO of unconventional configurations including **low-noise objectives and/or constraints**

ANIMA *(Aviation Noise Impact Management through Novel Approaches)*

Stand-alone models to include **new technologies** and concepts in **impact** management and analysis tools
The tool

FRIDA (FRamework for Innovative Design in Aeronautics)

Multi–Objective, Multi–disciplinary Robust Design Optimization environment developed by Roma Tre Aircraft Design Group for classic (T&W) and innovative (BWB, PP) configurations
Summary

- Meta-Models (MM) definition
- RBF-based deterministic and adaptive-stochastic MM
- Simple 1D benchmark
- An early application to shielding (1D and 2D)
- Current activity
Meta-model = the model of a model

In our context: a fast model reproducing the response of a costly simulation
Meta-model = the model of a model

The Training Set (TS) gives the response at a set of points
Meta-model = the model of a model

The Meta-Model (MM) reproduces the response at any \(x \in D_{TS} \)
Accuracy is strongly application–dependent

- Location and number of TS points
- Properties of the target response $f(x, y)$
- Characteristics of the surrogate model $\hat{f}(x, y)$

Many different approaches are available . . .
In the present work we focus on Radial Basis Fuctions (RBF)

- Simple implementation
- Demonstrated effectiveness in medium– to high–dimensional problems
- Versatility: the choice of the RBF kernel makes possible the tailoring of the MM
Deterministic RBF MM

RBF MM

Given a training set TS of \(M \) points \([\xi_i, f(\xi_i)]_{i=1}^{M} \), with \(\text{Dim}(\xi) = N \), the RBF model of the sampled response is

\[
\hat{f}(\xi) = \sum_{i=1}^{M} w_i \varphi\left(|\xi - \xi_i| \right)
\]

Weights \(w_i \) are obtained by imposing the reproduction of TS, \(\mathbf{A} \mathbf{w} = \mathbf{f} \), with \([\mathbf{A}]_{ij} = \varphi\left(|\xi_i - \xi_j| \right) \).

RBF Kernels

Kernel choice is a key point (Gaussian \(\varphi(r) = e^{-(\gamma r)^2} \), Inverse quadratic \(\varphi(r) = 1 / \left[1 + (\gamma r)^2 \right] \) \ldots). For the moment, let’s start with simple polyharmonic splines

\[
\varphi(r) = r^\epsilon, \quad \epsilon = 1, 3, 5, \ldots
\]
Deterministic RBF MM

RBF tuning

Specifically, we will use the cubed Euclidean distance

\[
\varphi(|\mathbf{\xi} - \mathbf{\xi}_i|) = \left(\sqrt{\sum_{k=1}^{N} (\xi_k - \xi_k^i)^2} \right)^3
\]

The RBF sensitivity to local curvature can be mitigated with an auto–tuning procedure

\[
\varphi(|\mathbf{\xi} - \mathbf{\xi}_i|) = \left[\sqrt{\sum_{k=1}^{N} c_k^2 (\xi_k - \xi_k^i)^2} \right]^3
\]

where \(c_k\) is a function of max local curvature.
A simple benchmark

The problem

- **Target**: field induced by a moving isotropic point source in a co–moving region
- **Design variable**: position of the source x_s
- **Parameters**: Mach number M_s, observer location x_M
A simple benchmark

Design and Training spaces

- **Design space**: region of the physical space where the source can be located
- **Training space**: region of the abstract space of all the possible experiments

\[\xi = \begin{cases} x_s & \text{M (proc. var.)} \\ M_s & \text{x_M (design var.)} \end{cases} \]
A simple benchmark

- $\mathbf{x}_s \in [(0.5, 0.5), (2, 2)]$
- A line of N microphones along $z = 0$
- $M_s \in (0.2, 0.4)$

Here, the training set comprises $N_s = 5$ source positions, $N = 40$ monitoring points and 3 values for Mach.

Number of training experiments is $N_p = 600$

Off–set and off–domain evaluations

- TS reproduction
- Off-set prediction
- Off-domain prediction
A simple benchmark

\[M_s = 0.2, \ x_s \equiv (1.5, 1.5) \]

\[M_s = 0.2, \ x_s \equiv (0.5, 0.5) \]

Training set reproduction

\[M_s \notin TS, \ x_s \in TS \]

\[M_s \in TS, \ x_s \notin TS \]

\[M_s \notin TS, \ x_s \notin TS \]

Off set prediction

\[M_s \notin D_T, \ x_s \in D_T \]

\[M_s \in D_T, \ x_s \notin D_T \]

\[M_s \notin D_T, \ x_s \notin D_T \]

Off domain prediction

U. Iemma et al. Metamodels for engine noise shielding
So, for deterministic MM...

- Definition of the best TS is not a trivial task (D.O.E.? ...EXPENSIVE !)
- Verification of MM accuracy needs the time-consuming model to be run
- Improvement of the MM can be a resource-draining task
So, for deterministic MM...

- Definition of the best TS is not a trivial task (D.O.E.? ... EXPENSIVE!)
- Verification of MM accuracy needs the time-consuming model to be run
- Improvement of the MM can be a resource-draining task

Let's go
DYNAMIC, ADAPTIVE and STOCHASTIC!
Stochastic RBF MM

Stochastic RBF

\[
\varphi (|\xi - \xi_i|) = \sqrt{\sum_{k=1}^{N} \left(\xi_k - \xi_{i_k} \right)^2}, \quad \epsilon \sim \text{Unif} [\epsilon_{\text{min}}, \epsilon_{\text{max}}] \equiv D_\epsilon
\]

Stochastic MM

Is the expected value \(EV \) of \(\hat{f} \) over \(\epsilon \)

\[
\hat{f}_s(\xi) = EV \left[\hat{f}(\xi, \epsilon) \right] = \int_{D_\epsilon} \hat{f}(\xi, \epsilon) P(\epsilon) \, d\epsilon
\]

[U.lemma et al.] Metamodels for engine noise shielding
Each estimate of \(\hat{f}_s(\xi) \) is associated to an uncertainty \(U_{\hat{f}}(\xi) \).

It is defined as the difference of the relevant \(\alpha \)-quantiles

\[
U_{\hat{f}}(\xi) = q(\alpha_1, \xi) - q(\alpha_2, \xi) = CDF^{-1}(\alpha_1, \xi) - CDF^{-1}(\alpha_2, \xi)
\]

with

\[
CDF(y, \xi) = \int_{D_\epsilon} H[y - \hat{f}(\xi, \epsilon)] P(\epsilon) \, d\epsilon
\]
Dynamic–Adaptive MM

MM quality

$U_\hat{f}(\xi)$ can be used to measure the local reliability of the MM.

A dynamically adaptive MM can be built

1. Build the MM on the current TS
2. Search for $\text{Max}[U_\hat{f}(\xi)], \xi \in D_T$
3. Increase TS with new point at U_{max} and update MM (with the costly model)
4. Stop when $U_{\text{max}} \leq U_{\text{conv}}$
The simple benchmark

Same as before, but now with dynamic, stochastic approach

- $U(f(\xi)) = q(0.975, \xi) - q(0.025, \xi)$ (95% confidence band)
- $U_{conv} = 10^{-5}$
- Initial TS with $M = 3$
- Monte Carlo method with 15 random samples for $\epsilon \in [1, 3]$
A simple benchmark

Progressive update of TS
A simple benchmark

- Additional samples only where needed (high uncertainty)
- Uncertainty quantification using the MM \Rightarrow FAST!
- Minimises the calls to the high-fidelity model (only TS update)
- Once that $U_{\hat{f}} < \epsilon$ a deterministic model (faster, no Monte Carlo) can be built on the converged TS
A simple 1D shielding exercise

The problem

- **Target**: ΔSEL at a monitoring point located 2 chords underneath a NACA 0012 foil
- **Design variable**: position of the source along the chord, x_s at 0.1 chord above the foil

The TS is one–dimensional and coincides with \mathcal{D}

$$\xi = x_s$$
A simple 1D shielding exercise

The TS is updated when $U_{\text{max}} \leq 0.001$

- $U_{\tilde{f}}(\xi) = q(0.975, \xi) - q(0.025, \xi)$ (95% confidence band), $U_{\text{conv}} = 10^{-5}$
- Monte Carlo method with 15 random samples for $\epsilon \in [1, 3]$
- Airfoil scattering calculated with in-house convective 2D BEM code

Progressive update of TS
A simple 2D shielding exercise

The problem

- **Target**: ΔSEL at a monitoring point located 2 chords underneath a NACA 0012 foil
- **Design variable**: position of the source along the chord, x_s at 0.1 chord above the foil
- **Parameter**: Mach number M_s of the uniform stream

$$\xi = \left\{ \begin{array}{c} x_s \\ M_s \end{array} \right\}$$
A simple 2D shielding exercise

Same procedure: the TS is updated when $U_{\text{max}} \leq 0.001$

- $U_f(\xi) = q(0.975, \xi) - q(0.025, \xi)$ (95% confidence band), $U_{\text{conv}} = 10^{-5}$
- Monte Carlo method with 15 random samples for $\epsilon \in [1, 3]$
Current activity

- Tailored RBF kernel (oscillating, decaying, complex . . .)
- Selection of appropriate stochastic parameters
- High–dimensional training spaces
- Adaptive strategies for dynamic update
The work is a preliminary analysis of modern meta–modelling techniques applied to aeroacoustic problems.

- The general approach adopting RBF with standard polyharmonic kernels appears to be promising.
- The potentiality of tailored RBF kernels deserves a careful investigation to be completely disclosed.
Concluding remarks

- The work is a preliminary analysis of modern meta-modelling techniques applied to aeroacoustic problems.
- The general approach adopting RBF with standard polyharmonic kernels appears to be promising.
- The potentiality of tailored RBF kernels deserves a careful investigation to be completely disclosed.

Thank you!