Fit for purpose training environments

Royal NLR - Netherlands Aerospace Centre
Welcome to Royal NLR. Discover more about the innovative training and simulation programmes we develop for military forces and other clients. The common goal is to make training more effective and efficient.

Our vision of military training is founded on competency-based and performance-based training (PBT) concepts using integration and interoperability of live, virtual and constructive elements. Our approach focuses on a thorough process of analysis, design, development and implementation with the client.

Our staff have detailed knowledge of training, simulation, human behavioural assessment and regulations for military forces. This knowledge is combined with applied technical research and development in simulation. NLR actively develops innovative training technologies and training media. These capabilities and our in-house research infrastructure ensure that NLR can oversee the entire spectrum and stay on top and ahead of new developments and innovations in military training and simulation.

Results include interconnected tactical simulators for fighter pilots, training needs analysis and competency-based training redesign for helicopter crews and the development of new concepts and doctrines for fifth-generation air forces. Overall, this provides our clients with an optimum blend of live and (low, medium and high-fidelity) simulator training for our clients. This offers you the best possible service and advice. The projects in this brochure showcase our unique approach.

Michel Peters, CEO
Royal Netherlands Aerospace Centre
Fit-for-purpose training environments

To assure continuous deployment and mission readiness, military forces need to make their training more effective and efficient. The time spent flying must be as effective as possible. This means more customised and less expensive training. This can be achieved through an optimum blend of live and low and high-fidelity simulated training, along with learning analytics, making it possible to keep tailoring the training to personal or broader training needs.

Royal NLR believes that a modern vision of training requires a holistic instructional design approach that is well-prepared for the high level of integration and interoperability of systems. Only then can a thorough genuine understanding of training needs and an analysis of simulation and evaluation requirements be guaranteed.

The Royal NLR design approach is based on the 4C/ID instructional design system. This is about learning complex skills in a realistic context using four main ingredients: whole-task training, part-task practice, supporting theory and just-in-time information. In addition to 4C/ID, we advocate performance-based training, in which each individual receives customised training at the most suitable moment using the best blend of training media, based on learning analytics. The design and redesign cycle is then finally closed by quality assurance, in which validation and qualification take place.
TRAINING NEEDS ANALYSIS (TNA)

Analyse operational training needs and determine the required competences through a Training Needs Analysis. The result is a competency-based qualification profile that can be used as input for the training design.

TRAINING DESIGN

Produce a rough outline of the training course. Define the learner scenarios and goals in line with the training needs. Determine and assemble the required whole tasks and part tasks and insert supporting and procedural information where required. The result is a blueprint for training that can be used to develop the training syllabus and define training media requirements.

TRAINING MEDIA ANALYSIS (TMA)

Develop a training syllabus and select training media such as simulation, AR/VR, after-action review support tools, books, e-learning etc. Where no suitable media are available, user requirements need to be specified. The result is a fit-for-purpose training environment in which training media are well balanced and properly integrated into the competency-based training design.

TRAINING TECHNOLOGY & ECOSYSTEMS

Assuring that training media adhere to the defined user requirement often requires technical development or improvement, for instance development of targeted fidelity VR-based simulators, interconnectivity between different simulation platforms or data collection for learning analytics are requirements that might not be available in current systems. Complex training systems for large organisations will benefit from a well-defined perspective and well-integrated components of the total system: a learning ecosystem.
LEARNING ANALYTICS
Learning analytics are critical to competency-based and performance-based training. This is the engine of modern learning ecosystems, providing a process to select, gather and analyse more detailed data on proficiencies.

QUALITY ASSURANCE - SIMULATION & DIGITAL TRAINING DEVICES
Verifying, validating, evaluating and qualifying simulation and digital training devices in any phase of the lifecycle is extremely important. The result will allow maximum advantage to be taken of the blend of simulation and digital training media within civil and military education & training programmes.

TRAINING CULTURE
Changing a training method can also entail a cultural change. To guide an organisational change, three main factors are of importance: stakeholder involvement, trainer and trainee mentoring and evaluation and feedback. Tackling these factors is a necessity to ensure success when implementing change.
Project partners
Government (NL):
Project Bureau NH-90, Test Flight Office
Research organisation: Royal NLR

Start: July 2014
Duration: ongoing
NH-90 Full Mission Flight Trainer Evaluation

Evaluation of NH-90 simulation device compliance

THE CHALLENGE
The purpose is to perform evaluations of the compliance of the NH-90 simulation devices with their respective regulations and/or standards. The NH-90 simulation can be split into two separate devices that can be used separately for specific crew training and combined for full mission flight training.

- Full Flight Simulator (FFS) used for pilot training
- Virtual Sensor Trainer (VST) used for sensor operator training
- Full Mission Flight Trainer (FMFT), used for mission training with pilots, tactical coordinators, and sensor operators.

WHAT WE DID
For evaluation of the FFS, the NLR evaluation team will first assess the Qualification Test Guide (QTG) of the FFS. Based on the results of this appraisement, the project team will determine if an onsite evaluation can be conducted. That will take several days during which the devices are assessed objectively by rerunning QTG tests, functionally, and subjectively as per the regulation set. The VST cannot provide objective data, so all tests performed on the VST will be subjective and functional tests.

Furthermore, the military aspects of the devices are not accounted for in the civil regulations agreed between the simulator operator and the manufacturer. To gain an understanding of the military/tactical capabilities of the devices, interviews will be conducted with experts of all crew types involved in operations on the devices.

THE SOLUTION
The result of the project will be an evaluation process (including V&V reports) making it possible to determine:

- Whether the NH-90 FFS, VST, and FMFT are performing in accordance with the relevant regulations that will ensure safe operation of the NH-90 and its subsystems
- Whether devices are suitable for training pilots, sensor operators, and tactical coordinators in both individual tasks and mission settings.
Multi-Ship Multi-Type Helicopter Simulation Training Capability

Acquisition & Deployment Support

THE CHALLENGE
The RNLAF is currently acquiring and deploying a unique multi-ship multi-type (MSMT) helicopter simulation training capability to support the fight, tactical and whole-task mission training of CH-47F and AH-64E crews at all operational levels. The MSMT capability will incorporate a large number of high-end simulation training devices, a tactical control centre (TCC), AAR and training mission development systems within a single flexible, scalable and easily expandable training environment that will have to cover a wide range of versatile training needs. Together with the many RLNAF stakeholders and industry parties involved in the acquisition and deployment of the capability, this makes the MSMT program a hugely demanding undertaking with many challenges and risks in achieving the envisioned objectives.

WHAT WE DID
The MSMT programme was formulated as a staged process where each phase results in a training capability with limited but clearly scoped functionality. To guide the process, the MSMT training capability concept of operations (ConOps) as envisioned has been developed with the RNLAF end users along with an overarching simulation training system architecture.

Throughout each programme phase, a multi-disciplinary team of NLR experts conducted activities that include:

- Corporate and platform specific TNA/TMA
- PoR development for simulators, TCC and AAR
- RFI/RFP development and response assessment
- Engaging and challenging industry parties
- Integration testing and validation of industry deliverables
- Simulation training method and technology CD&E
- RoI analysis and decision-making assessment
- Training programme optimisation for using the capability
- Training mission development and operations support

THE SOLUTION
The project results in a full lifecycle support process that reduces the burden on both the Dutch Defence Materiel Organisation (DMO) and the RNLAF in acquiring and deploying the MSMT capability. A support process that ultimately leads to the most versatile mission simulation training environment possible with the highest level of interactivity for the RNLAF within the programme budget and timeframe. Continuous availability and direct access to a dedicated pool of NLR training and simulation experts deployable at key positions within the DMO, RNLAF and contracted industry parties.
Project partners
Dutch MoD (Defence Materiel Organisation)
Royal Netherlands Air Force Defence Helicopter Command
Research organisation: Royal NLR

Duration: 2018 - ongoing
Project partners
Defence Helicopter Command (DHC) of the Royal Netherlands Air Force
Joint IV Commando (JIVC) of the Ministry of Defence
Research organisation: Royal NLR

Start: June 2016
Duration: 2.5 years
Redesign of helicopter training
A common, modernised approach for platform qualification training

THE CHALLENGE
The Defence Helicopter Command of the Royal Netherlands Airforce expressed a need for a common, modernised approach for qualification training on all of their platforms.

WHAT WE DID
In cooperation with subject matter experts (operational pilots/load masters and instructors), a competency-based training needs analysis was performed. Competency profiles were identified for CH-47 pilots and load masters and for the AH-64 pilots. Idealised mission qualification training (MQT) outlines were designed that would lead to fully combat-ready pilots and load masters for a wide range of normal and adverse operational conditions. This is based on the assumption that modern tactical simulators are available, suitable live ranges are available and that there are no scheduling issues. Such ideal training conditions are important for creating and working with a clear vision of training.

With the idealised training setups in mind, actual MQT were developed, implemented and evaluated. User requirements for a multi-ship/multi-type (MSMT) simulation facility were also identified and a roadmap to a future idealised MSMT system concept was suggested.

All activities were facilitated by NLR and new, science-based approaches were applied as far as acceptable for the subject matter experts.

THE SOLUTION
The project produced actual MQT for AH-64 and CH-47 crews. Additionally, user requirements, a system concept and a roadmap for an MSMT simulation facility were provided.

The method applied is a competency-based training approach that applies the train-as-you-fight principle from the start. This primarily whole-task training setup is constructed using principles (for example gradually increasing complexity) that optimise cognitive load throughout the training.
Virtual Cockpit
Low-cost and high-fidelity training technology

THE CHALLENGE
Training devices that fit your training needs often require large investments and are usually type-specific. There are currently no training devices that allow highly realistic interaction between the pilot and cockpit instruments, without the disadvantages associated with expensive high-end devices. The Virtual Cockpit bridges this gap by providing the technology to do just that: low-cost and high-fidelity training technology.

WHAT WE DID
By combining NLRs state-of-the-art modelling & simulation and customer operational knowledge, we created a radical new low-cost mixed reality cockpit solution with natural human-machine interaction capabilities. Our concept involves smart integration of commercial off-the-shelf (COTS) products, 3D printing, virtual reality and finger/hand tracking into a type-customisable simulated working environment with a natural feel.

The concept was evaluated and improved with operational experts in several iterations throughout the project.

The Virtual Cockpit has been used by international and national customers to carry out concept development and experimentation, and projects on evasive manoeuvre training.

THE SOLUTION
The result is a concept demonstrator that allows highly realistic interaction and provides pilots with all the visual, auditory and haptic experience and feedback that they need for a high-fidelity training experience. This technology concept also provides the ability to build a highly configurable and mobile setup with a small footprint that is still low-cost.
Project partners

Industry (NL):
Cinoptics, provision of high-res VR-optics
Research organisation: Royal NLR

Start: October 2016
Duration: 2.5 years
Project partners
NL MOD
Research organisation: Royal NLR

Start: February 2018
Duration: 3 months
JLV 360

Virtual Reality training made easy for both trainee and instructor

THE CHALLENGE

Shooting 360° videos is easy and is being used more and more to familiarise and even train people in various situations by immersing them using virtual reality goggles. Supporting flight training using these 360° videos in combination with VR goggles, however, is more difficult.

The resolution of video capturing and VR hardware is typically too low to allow displays to be read, and that is particularly important in flight training. Although high-end equipment may offer some relief, it still does not solve the problem completely and lowers the accessibility, ease of use and affordability of the setup.

WHAT WE DID

NLR and NL MOD joined forces to incorporate VR into the initial flight training curriculum of military pilots. Using an agile design and development approach let us co-create an application that allows the benefits of VR training to be reincorporated to re-experience earlier training flights and get the most out of the actual flight time with instructors.

THE SOLUTION

NLR has developed a VR application that makes it easy for both flight instructors and trainees to use VR as training support. Trainees can easily re-experience a flight, including readable instruments, whenever and wherever they want. Instructors can easily add and configure new training content. Combining 360-degree video with high-resolution insets ensures readable imagery and smart editing options to counter the resolution limitations of current VR devices.
Replacement of initial training capacity
Flexible and scalable future training

THE CHALLENGE
The PC-7 training aircraft of the Royal Netherlands Air Force (RNLAF) needs to be replaced. A Training Needs Analysis (TNA) and Training Media Analysis (TMA) were therefore done, aiming to provide a solution for the replacement of the entire initial training capacity. This training capacity needs to be flexible and scalable to meet the changing training needs in the future. As a result, the following questions should be answered clearly:

- What is the end goal of the training?
- What is the desired training concept?
- What are the most suitable training media?

THE SOLUTION
To answer these questions, NLR uses an approach called the Comprehensive Analysis Process for Aircraft Blended Learning Environments (CAPABLE). CAPABLE is a structured approach to an integrated training solution. This approach is complemented with a TMA aimed at maintaining flexibility in the long term. The TMA takes current and possible future technological developments in the field of training into account in order to arrive at an optimum training medium or an optimum blend of training media.

WHAT WE DID
NLR, in cooperation with the RNLAF and DMO (the Dutch Defence Materiel Organisation) has performed a TNA that served as input for a training design blueprint. Subsequently, the blueprint has been used in a future-proof Training Media Analysis based on user and functional requirements for training media. The RNLAF instructors then develop the actual training design using the blueprint and TMA as reference documents. Finally, the results of the TMA can be utilised by the RNLAF for Requests for Information (RfI) from Original Equipment Manufacturers (OEMs) for training resources, which will be carried out by the DMO.
Project partners
Client: Royal Netherlands Air Force, Dutch Defence Materiel Organisation
Research organisation: Royal NLR
Period: February - May 2021
THE CHALLENGE
In military simulations, computer-generated forces (CGFs) are autonomous entities that represent friendly, neutral or hostile air, ground surface, or subsurface-based units, platforms or individuals. The behaviour that CGFs display in the simulations is modelled to resemble realistic human behaviour. CGFs are typically used in application areas such as training, mission rehearsal, concept development and experimentation (CD&E) or decision support. For each application, the CGFs require different behaviour models. However, traditional modelling techniques do not give scope for expression and keep modellers from quickly developing new models. New approaches to behaviour modelling are therefore required.

WHAT WE DID
The Smart Bandits project aims to explore various approaches to modelling human-like behaviour.

To this end, we carried out research in two main directions, namely human behaviour and computational modelling. In the former, we specifically studied situational awareness (i.e. perception of the environment) and theory of mind (i.e. beliefs, desires and intentions). In computational modelling, we studied the use of machine learning techniques for enhancing classical modelling techniques such as finite-state machines and behaviour trees. A key component of the Smart Bandits project was the evaluation of newly developed techniques in human-in-the-loop simulations, such as in NLR’s Fighter 4-Ship networked F-16 simulator.

Project partners
Research organisations:
Royal NLR, VU University Amsterdam

Start: 2010
Duration: improvements ongoing
THE SOLUTION

The results of the studies have been combined in a user-friendly graphical behaviour modelling tool. The tool was named Smart Bandits (after the project). It lets modellers quickly implement behaviour models and link the new models to the CGFs in a simulation engine. While the CGFs make their observations in the simulated world, the Smart Bandits tool calculates their next actions. During simulations, the behaviour models can easily be inspected to see what the CGFs are thinking. Apart from being an intuitive modelling tool, Smart Bandits continues to be a platform for behaviour modelling research. NLR is continuously experimenting with new modelling techniques and new ways of interacting with CGFs.
The NLR Battle lab Cerebro will be operational by mid-2023
The NLR Battle lab Cerebro

Testing environment for military study, demonstration and research purposes

NLR provides a battle lab capability by integrating high-fidelity platform simulators with additional proof-of-concept demonstrators and extensions to other battle labs. Cerebro can ultimately also be coupled to live systems when connected to e.g. a Link-16, DIS or HLA gateway.

Cerebro can be used for both small and larger projects that require multiple simulators to work in an integrated environment. The extensive use of platform simulators and computer-generated forces will reduce the costs while enabling testing of new functionalities concepts in a safe and classified environment.

BROAD RANGE OF RESEARCH AND TESTING APPLICATIONS

- Operational and Tactical Doctrine Development
- Multinational Collaborative Developments
- 5th Gen Airforce
- Information-driven Operations
- Concept Development & Evaluation for Operations and Training
- Serious Wargaming

TECHNICAL SPECIFICATIONS – SIMULATION SET-UP

The steps for concept development in Cerebro are cyclical, as is usual in CD&E and DT&E processes. Before starting development, relevant background information is collected, research questions are formulated and ultimately conclusions are drawn and a report is written.

BATTLE LAB BASED ON VIRTUALISATION

The Cerebro infrastructure is fully based on a virtualisation solution, enabling rapid configuration and deployment of exercises with various tools, services, and simulators:

- Quick configuration of simulation tooling and scenarios
- Rapid deployment of simulation exercises to end-users
- Core services readily integrated, e.g. terrain databases, scenarios, chat, simulation backbone
- Promotes quick and agile development of simulation experiments
SCOTT: Smart Controller Training Tool

Diverse and realistic scenarios for fighter controller training

Fighter controllers are essential for the safety and effectiveness of fighter pilots. They provide the pilots with a complete and correct air picture. Fighter controllers must be well trained to observe, assess and communicate in rapidly evolving situations. This includes training scenarios that are diverse and have realistic fidelity and scale in terms of the platforms involved and their behaviour.

THE CHALLENGE
Training and educating fighter controllers is often highly labour-intensive, as well designed and user-friendly tools to simulate air engagements are not readily available. Frequent training with live assets in the air is costly in terms of logistics, coordination and the number of platforms (blue and red) required. Generating realistic behaviours of constructive platforms is typically not available without human input. The challenge is to create the desired level of realism in an environment where the minimum required human involvement is low.

THE SOLUTION
Royal NLR designed and developed SCOTT as an easy-to-use tool for instructors and pseudo-pilots for fighter controller training. SCOTT is a tool that can create realistic tactical simulation exercises using artificial intelligence (AI), consisting of both Blue and Red air platforms. SCOTT can run air-to-air combat scenarios autonomously, but a human can intervene in the tactical decisions of the constructed air platforms. As the scenarios are easier to control, larger tactically relevant scenarios can be implemented. SCOTT presents these scenarios via DIS to the operational system for fighter controllers. Interoperability between SCOTT and other simulator systems is also possible, e.g. for LVC or MTDS exercises.

WHAT WE DID
NLR developed the SCOTT tool to allow the design and execution of air-to-air combat scenarios and contain autonomous and semi-autonomous tactical constructive entities. NLR added realistic tactics and missile performance which can be specified to national requirements. These are based on tools that were developed in-house: Smart Bandits (AI behaviour) and WEST (missile performance). This resulted in a low-effort tool for easy control of the scenario and adjustment to the desired learning objectives.
Project customers:
Royal Netherlands Air Force (RNLAF)
Defence Equipment Organisation (DMO)
Research organisations: Royal NLR
Netherlands Organisation for Applied Scientific Research (TNO)

Start: February 2000
Duration: ongoing
F-35 Acquisition & Operational Readiness Preparation

Design and construction of multiple training and evaluation plans

THE CHALLENGE
NLR helped the RNLAF with F-35 acquisition and operational readiness by focusing on transforming the Defence Materiel Organisation (DMO) into a smart buyer and assisting the RNLAF with a smooth transition from the F-16 to the F-35. Within this programme, multiple training & education projects have been carried out to design and improve training for pilots, maintenance staff and mission support crew.

WHAT WE DID
The training methods, tools and activities carried out by NLR throughout the F-35 programme include:

- Training Needs Analysis (TNA) for pilot maintenance staff and mission-support roles
- Design of an F-35 pilot competency profile, initial and recurrent training course content
- Training Media Selection Analysis (TMA)
- Business case for a Maintainer Training Centre (MTC)
- Multi-Spectral DataBase (MSDB)
- Continuation training including Performance-Based Training (PBT)

THE SOLUTION
The activities mentioned helped to develop a variety of products and services, including:

- Initial and recurrent training course content for pilots and maintenance staff
- Design and execution of an Operational Test & Evaluation plan for Continuation Training
- Design and construction of a WLT (Weapons Loader Trainer) including augmented reality applications.
Competency-based maintenance training
Development of maintenance training as a result of changed regulations

THE CHALLENGE
The development of the European Military Aviation Regulations (EMAR) resulted in changes in the Dutch military aviation regulations. The content and levels of the maintenance type training for the F-16, AH-64D, CH-47D/F and the NH-90NFH therefore needed to be updated. Moreover, the training did not fully meet the needs of (novice) mechanics, and the training did not always accurately represent the actual work of the mechanic. The focus of the training was merely on theory; the practical side was not offered in an integrated way.

WHAT WE DID
In cooperation with maintenance mechanics and instructors, the various steps in an instructional design process were carried out. To analyse the training needs, several workshops were held with both experienced and inexperienced maintenance mechanics. Throughout the process, there were various presentations and discussions to explain and define the desired training concept. Working sessions with the instructors and developers were subsequently held to develop training course in accordance with this concept.

THE SOLUTION
First, a competency-based training concept was defined in line with the 4-component instructional design principles (4C/ID). This concept focuses on whole-task training. Theory and part-task practice are integrated to support the whole task scenario. Qualification profiles were defined based on the outcome of the training needs analysis. Finally, the training was developed, including supporting materials. Besides training materials, an assessment method also was developed to allow student coaching and evaluation. This method comprises competencies including their observable behaviours and can be used for continuous coaching and assessment.
Project partners
Royal Netherlands Air Force:
Royal Military Air Force School (KMSL)
Research organisation: Royal NLR

Start: May 2014
Duration: 3 years
Project partners
Royal Dutch Airlines KLM
Research organisation: Royal NLR

Start: June 2016
Duration: 2.5 years
Augmented reality for maintenance training
Problem-based training with increased trainee activity

THE CHALLENGE
KLM expressed the need for more innovative training media to modernise and improve maintenance training.

WHAT WE DID
To ensure properly integrated use of training media, the project started with a review of the current training design and an analysis of current training content. Subsequently, there was a study of whether augmented reality (AR) could add value for aircraft systems that are difficult to train through traditional classroom training. Requirements for the AR application and training design were defined before starting actual development. Finally, the prototype was evaluated through an experiment.

The project was carried out in a highly interactive and agile way. Bi-weekly sprints were held with experts from relevant areas such as maintenance experts, application developers, human-machine interface experts and educational experts, which ensured accuracy and acceptance of intermediate and final results.

THE SOLUTION
The result of the project is a modernised, problem-based maintenance training design that enhances understanding of the systems and system interaction. This design comprises less traditional instruction and more trainee activity through paper-based assignments and problem-based AR scenarios.

The experiments proved that trainees score better using AR when it is fully integrated into the training design; trainees retained more of what they learned, had a deeper understanding and retention time was longer compared to traditional classroom training. Important lessons learned are the importance of shared AR and a maximum of 20 minutes wearing the AR goggles.
IDTEAM
Development of a learner experience platform and recommender algorithm for tracking performance and providing recommendations for learning

THE CHALLENGE
To ensure readiness and availability of fifth-generation air force weapons platforms and systems, maintenance personnel must be flexibly deployable and have the correct competencies and qualifications for aircraft maintenance. To meet these demands effectively, current training of maintenance personnel must change from a formalised, classroom, pre-planned and one-size-fits-all training strategy to a more distributed and personalised training strategy.

WHAT WE DID
To support personalised training, IDTEAM explored the possibilities and benefits of using an integrated digital learning environment also known as a ‘Learning EcoSystem’ over traditional learning means for fifth-generation airforce maintenance. During evaluations with the Dutch Ministry of Defence, multiple components of the learning ecosystem have been prototyped and evaluated. These sessions were carried out with a broad range of users (students, instructors and staff members).

THE SOLUTION
In collaboration with BlueTeam, a training application was developed that allows part of the pre-flight inspection to be practiced at each student’s individual level. Easy and harder difficulty levels have been added for students looking for more of a challenge. During each scenario, students receive personalised feedback and instructions. During play, data is logged to a Learning Record Store (LRS). This is done via an Experience Application Integrator (xAPI), which translates the data from the training application so it can be stored in the LRS. Additionally, an early version of an observation application was tested. This app allows instructors to make quick digital notes and evaluate the performance of the students performing a task on the aircraft. Data coming from this application can also be logged in the LRS using xAPI. A ‘recommender algorithm’ was developed for recommending a next learning activity that tracks performance and provides recommendations for learning activities that fit the student’s profile. Finally, a ‘Learner eXperience Platform’ (LXP) demonstrator lets students observe their progress in the various learning tasks and competencies and see and start the recommended training activities.
Project partners
Armasuisse, Swiss Armed Forces
Hulleman Expertise
Research organisation: Royal NLR

Start: September 2017
Duration: 1.5 years

Note – given ratings are fictive and don’t represent the Swiss Armed Forces situation
Swiss Armed Forces Simulator Portfolio Rationalisation

Formulation of training and simulation vision including a roadmap for implementation

THE CHALLENGE
Many nations are facing the question of what to do with their end-of-life simulators and how to ensure their replacements will be more (cost-) effective, efficient, and future-ready. The Swiss Armed Forces are investigating possible options for developing a new portfolio of training simulators. The options should fit the envisaged Swiss Armed Forces’ future training needs and budget for 2030 and beyond.

WHAT WE DID
A corporate TNA was carried out to identify current and future demands and to review the major training facilities. A training and technology scan was carried out, together with a small benchmarking activity. This led to advice on a training & simulation vision, including measures for integrated simulation architecture and infrastructure.

Three different options were put together for realising the training demands and constraints. One option aimed for simulator replacement with limited change (‘Minimise Change’), a second aimed to take advantage of the large variety of envisaged training media, including VR, AR, MR and PC-based simulation (‘Richly Blended’). A third option aimed to maximise PC-based simulation (‘Lean & Agile’). All options require a considerable level of integrated simulation infrastructure. The three options were compared in terms of initial investments, cost reduction and training value against the current situation (‘business as usual’) as the baseline.

A roadmap was outlined towards implementation of the selected option.

THE SOLUTION
The project provided guidance for a high-level outline of options for a future training simulator portfolio with a broad outline of an implementation roadmap and plan for the Swiss Armed Forces. The key to the success of the selected option is to formulate a modern vision on training and simulation.
THE CHALLENGE
LVC incorporates Live, Virtual and Constructive elements into a single training environment. Conducting seamless LVC exercises remains one of the most challenging issues in modelling and simulation for modern air forces. There is insufficient interoperability, limited reuse and loose integration between the Live, Virtual and Constructive assets across multiple simulation and training environments. Our research programme focuses on efficient and user-oriented LVC concepts for training in the air domain.

WHAT WE ARE DOING
NLR helps identify concepts and solutions for LVC training development, integrated service-oriented architectures, datalink and communication technology and LVC exercise operations. Specific knowledge of the topics, processes and technology – known as the building blocks – is combined in an overarching Air LVC concept. This can cover complete systems such as flight simulators, training pods or datalink terminals, but also smaller tools and services such as datalink gateways or weapon effect services. An LVC architecture is determined and used for implementing a specific air domain LVC capability with existing systems, networks and tools. This capability is used to test and evaluate LVC technology building blocks and processes in relevant international operational exercises.

THE SOLUTION
The goal is to determine how LVC solutions can be utilised for better and more effective air power, in collaboration with the Royal Netherlands Air Force. Expected results of the project are as follows:
• LVC concepts for flexible and scalable training in the air domain
• Testbeds and demonstrators of LVC technology
• Experimental tests of innovative LVC solutions connected to live exercises
• Recommendations on how to use LVC environments for concept development and experimentation
Project partners
Royal Netherlands Air Force:
Research organisation: Royal NLR

Start: 2021
Duration: 4 years
NLR in brief

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-stop-shop</td>
<td>Global player with Dutch roots</td>
</tr>
<tr>
<td>Innovative, engaged and practical</td>
<td>For industry and government</td>
</tr>
<tr>
<td>€ 91 M turnover</td>
<td>For fixed and rotary wing</td>
</tr>
<tr>
<td>73% Dutch, 23% EU and 4% international</td>
<td>Active in 30 countries</td>
</tr>
<tr>
<td>Extremely high client satisfaction</td>
<td>690 employees</td>
</tr>
<tr>
<td>Amsterdam, Noordwijk Marknesse, Rotterdam, Volkel</td>
<td>Since 1919</td>
</tr>
</tbody>
</table>

About NLR

Royal Netherlands Aerospace Centre

NLR is a leading international research centre for aerospace. Its mission is to make air transport safer, more efficient, more effective and more sustainable. Bolstered by its multidisciplinary expertise and unrivalled research facilities, NLR provides innovative and comprehensive solutions to the complex challenges of the aerospace sector.

NLR's activities span the full spectrum of Research, Development, Testing & Evaluation (RDT&E). Given NLR’s specialist knowledge and state-of-the-art facilities, companies turn to NLR for validation, verification, qualification, simulation and evaluation. They also turn to NLR because of its deep engagement with the challenges facing our clients. This lets NLR bridge the gap between research and practical applications, while working for both government and industry at home and abroad.

Royal NLR stands for practical and innovative solutions, technical expertise and a long-term design vision regarding their fixed-wing aircraft, helicopters, drones and space exploration projects. This allows NLR's cutting-edge technology to find its way also into successful aerospace programmes of OEMs like Airbus, Boeing and Embraer.
NLR supports military forces in solving any challenge in modelling & simulation, ensuring effective realism and cost efficiency.

Royal NLR
• defines training & simulation vision
• performs operational training needs analysis
• designs training blueprints
• defines training media in line with training needs
• supports training implementation
• carries out training evaluation

For more information:
Harrie Bohnen, Department Manager Training & Simulation
p) +31 88 511 36 60 m) +31 623 04 79 71
e) harrie.bohnen@nlr.nl