Integration of the MQ-9B SkyGuardian into European Airspace

2 minutes read

NLR has partnered with General Atomics Aeronautical Systems, Inc. (GA-ASI) to develop the procedures needed to safely and efficiently integrate Medium Altitude, Long Endurance (MALE) Remotely Piloted Aircraft (RPA) into European Airspace. The first phase of this collaboration culminated on 28-29 May 2019 during which a large-scale simulation exercise was performed at the Amsterdam campus of NLR. The goal of this exercise was to test the first version of the MALE RPA airspace integration procedures, and involved experienced civil Air Traffic Controllers (ATCOs), as well as licenced airliner and RPA pilots. The exercise considered operations from Rotterdam The Hague Airport (EHRD), a civil airport in the Netherlands, and made use of a simulated MQ-9B SkyGuardian MALE RPA, an RPA that is designed and manufactured by GA-ASI.

“The goal of this study is to iteratively develop the procedures needed to operate MALE RPA in Europe based on empirical evidence gathered from a series of real-time simulation exercises,” said Dr. ir. Emmanuel Sunil, R&D engineer and project manager NLR. “During the first simulations performed in May, we subjected air traffic controllers to many contingency procedures ranging from engine failure to loss-of-link between the pilot and the RPA. The results indicate that the new procedures that we are developing will make it possible for MALE RPA to fly safely and efficiently in civil European airspace along with other manned air traffic.”

For the exercise, two NLR simulators were utilized: the NLR ATM Research Simulator (NARSIM), which simulates air traffic and provides working positions for ATCOs and aircraft pilots, and the NLR Multi UAS Supervision Testbed (MUST), which functions as the RPA simulator and the pilot ground control station. GA-ASI supported this exercise by providing 3D and kinematic models of the SkyGuardian RPA.

Future simulations studies are planned to improve the fidelity of the MALE RPA airspace integration procedures, through testing the effectiveness of on-board TCAS II and also consider the use of novel technologies such as Detect and Avoid (DAA) to further increase the safety of RPA operations. DAA technology provides RPA pilots with additional situational awareness of the traffic situation around their aircraft.

Get an impression of the simulations in the video clip below.

Latest news

NLR Marknesse - June 2018
NLR corporate

17 April 2025

Royal NLR appoints new Board

The Supervisory Board of NLR – Netherlands Aerospace Centre has appointed Tineke van der Veen, Jan Lintsen, and Martin Nagelsmit as the new collegiate board of the applied research organisation, effective June 1st, 2025[1]. They will take over the responsibilities of the current Managing Director Michel Peters, who will retire. The increasing complexity of technological […]
NLR corporate

09 April 2025

Welcome to our new website

Welcome to our new website Discover our research and developments presented in a modern and contemporary way. Our experts work on innovative projects every day to make air and space travel safer, more sustainable, and efficient. We’re pleased to share our expertise and knowledge with you about our projects and research, including the insights, developments, […]
Sustainability and Environment

14 March 2025

NLR and Cryoworld collaborate on flying with liquid hydrogen

NLR aims to achieve manned flight on liquid hydrogen in the near future. To make this possible, NLR will modify its electric-powered research aircraft, the Pipistrel Velis Electro, to include a hydrogen propulsion system. In December 2024, NLR took a significant step by partnering with zepp.solutions to develop a fuel cell system that can convert […]