Integration of the MQ-9B SkyGuardian into European Airspace

2 minutes read

NLR has partnered with General Atomics Aeronautical Systems, Inc. (GA-ASI) to develop the procedures needed to safely and efficiently integrate Medium Altitude, Long Endurance (MALE) Remotely Piloted Aircraft (RPA) into European Airspace. The first phase of this collaboration culminated on 28-29 May 2019 during which a large-scale simulation exercise was performed at the Amsterdam campus of NLR. The goal of this exercise was to test the first version of the MALE RPA airspace integration procedures, and involved experienced civil Air Traffic Controllers (ATCOs), as well as licenced airliner and RPA pilots. The exercise considered operations from Rotterdam The Hague Airport (EHRD), a civil airport in the Netherlands, and made use of a simulated MQ-9B SkyGuardian MALE RPA, an RPA that is designed and manufactured by GA-ASI.

“The goal of this study is to iteratively develop the procedures needed to operate MALE RPA in Europe based on empirical evidence gathered from a series of real-time simulation exercises,” said Dr. ir. Emmanuel Sunil, R&D engineer and project manager NLR. “During the first simulations performed in May, we subjected air traffic controllers to many contingency procedures ranging from engine failure to loss-of-link between the pilot and the RPA. The results indicate that the new procedures that we are developing will make it possible for MALE RPA to fly safely and efficiently in civil European airspace along with other manned air traffic.”

For the exercise, two NLR simulators were utilized: the NLR ATM Research Simulator (NARSIM), which simulates air traffic and provides working positions for ATCOs and aircraft pilots, and the NLR Multi UAS Supervision Testbed (MUST), which functions as the RPA simulator and the pilot ground control station. GA-ASI supported this exercise by providing 3D and kinematic models of the SkyGuardian RPA.

Future simulations studies are planned to improve the fidelity of the MALE RPA airspace integration procedures, through testing the effectiveness of on-board TCAS II and also consider the use of novel technologies such as Detect and Avoid (DAA) to further increase the safety of RPA operations. DAA technology provides RPA pilots with additional situational awareness of the traffic situation around their aircraft.

Get an impression of the simulations in the video clip below.

Latest news

Defence and Security

24 June 2025

NLR plays crucial role as partner between government and industry during NATO Summit

Key highlights: NLR plays a crucial role as a partner between the government and industry in the Dutch innovation ecosystem for defence and security. The organisation provides support for research, policy and implementation of new technologies for defence and security. NLR works with knowledge institutions and industrial partners to develop innovative solutions for defence and […]
ATTILA tiltrotor whirl flutter shakedown test in DNW LLF.
Platform System Design

24 June 2025

NLR introduces the Trim Excitation Device for precise wind tunnel testing

One of the main drivers behind improving the design of a tiltrotor is the aeroelastic instability characterised by strongly coupled wing-rotor movements, also known as whirl flutter. This phenomenon generally limits the maximum speed that the aircraft can achieve. Wind tunnel testing helps to understand and improve these sorts of aerodynamic properties of an aircraft. […]
Sustainability and Environment

23 June 2025

VÆRIDION and NLR want to accelerate research and development of short-haul electric aircraft

Key highlights: At the Paris Airshow 2025, VÆRIDION and NLR signed an MoU to accelerate development of the 9-seater all-electric Microliner. Focus areas include flight testing, systems validation, and regulatory compliance for short-haul regional aircraft. The MoU builds on VÆRIDION’s recent expansion into the Netherlands and reinforces commitment to the Dutch aerospace innovation ecosystem. NLR […]